Preventa

As well as the moral obligation to avoid harming anyone, there are laws that require machines to be safe, and sound economic reasons for avoiding accidents.

Safety must be taken into account

 right from the design stage and must be kept in mind at all stages in the life of a machine: design, manufacture, installation, adjustment, operation, maintenance and eventual scrapping.Preventa, the safety attitude around your machine life cycle

Machine safety

Automation 9/12 to 9/17
Safety PLCs
Safety controllers and modules
AS-Interface Safety at work 9/18 and 9/19
Safety monitors and interfaces
Detection 9/20 to 9/27Safety switchesSafety limit switchesCoded magnetic technologySafety matsSafety light curtains
Operator dialogue 9/28 to 9/32
Emergency stopsFoot switchesControl unitsProducts for explosive atmospheres (see chapter 10 "Explosive Atmospheres")
Motor control9/33 to 9/35
Switch disconnectorsTeSys motor starters

$>$ New machines - the Machinery Directive

The Machinery Directive 98/37/EC is to compel manufacturers to guarantee a minimum safety level for machinery and equipment sold within the European Union.
From 29 December 2009, the new European Machinery Directive 2006/42/EC will be effective. Machines have to comply with the Essential Health and Safety Requirements (EHSRs) listed in Annex I of the Directive, thus setting a common minimum level of protection across the EEA (European Economic Area).
Machine manufacturers, or their authorised representatives within the EU, must ensure that the machine is compliant, the Technical File can be made available to the enforcing authorities on request, the CE marking is affixed, and a Declaration of Conformity has been signed, before the machine may be placed on the market within the EU.

Functional safety

«Helping you to reach easily your safety machinery and standard level required»

Thanks to directives and standards as guidelines.

Functional safety

> Safety integrity level (SIL), Performance level (PL)

MACHINES

SAFETY OF SYSTEMS AND EQUIPMENT

EN/IEC 61508

Functional safety of electrical / electronic / programmable electronic safety-related systems

EN/ISO 13849-1

Safety related parts of control systems

Risk reduction according to EN/IEC 61508 and EN/ISO 13849-1

- Safety is achieved by risk reduction (for those hazards that cannot be designed-out).
- Residual risk is the risk remaining after protective measures have been taken.
- Protective measures realised by E/E/PE* safety related systems contribute to risk reduction.
* Electric / Electronic / Programmable electronic

Functional safety of machinery

> Approach according to EN/IEC 62061

Risk estimation for SIL assignment
Risk related to
the identified

hazard \int\begin{tabular}{l}
Severity of

the possible

harm

$\quad \sim$

Frequency and duration of exposure

Probability of occurrence of a hazardous event

Probability of avoiding or limiting harm

\quad

Fr

\hline

Probability of

occurrence of

that harm
\end{tabular}

Example of SIL assignment

This assignment should be carried by determining the risk parameters that are shown below in an example.

In this example the SIL 3 must be achieved by the safety-related control function intended to reduce the risk related to the identified hazard.

Determination of the SIL level achieved by the Safety-related control function (SRCF)
According to standard EN/IEC 62061 for each safety related control function, the SIL level is linked to:

- a target failure value for the probability of dangerous failure by hour of the SRCF: PFHD
- architectural constraints (hardware fault tolerance, diagnosis)
- a set of requirements related to the lifecycle of the safety related electrical control system

Safety integrity level (SIL)	Probability of a dangerous Failure per Hour PFHD
3	$>10^{-8}$ to $<10^{-7}$
2	$>10^{-7}$ to $<10^{-6}$
1	$>10^{-6}$ to $<10^{-5}$

$\lambda_{\mathrm{s}}=$ rate of safe failures,
$\lambda_{\mathrm{dd}}=$ rate of detected dangerous failures,
$\lambda_{\mathrm{du}}=$ rate of undetected dangerous failures
In practice, detected dangerous failure are dealt with by fault

- The rate of failures λ can be expressed as follows: $\lambda_{=} \lambda_{\mathrm{s}}+\lambda_{\mathrm{dd}}+\lambda_{\text {du }}$
- The calculation of the PFHD for a system or subsystem depends on several parameters: - the dangerous failure rate $\left(\lambda_{d}\right)$ of the subsystem elements - the fault tolerance (e.g. redundancy) of the system
- the diagnostic test interval (T2)
- the proof test interval (T1) or lifetime whichever is smaller
- the susceptibility to common cause failures (β)
- For each of the four different logical architectures A to D there is a different formula to calculate the PFHD. (see EN/IEC 62061)
- For a simple system without redondancy and without diagnostic: PFHD $=\lambda_{d} \times 1_{h} \quad \lambda_{d}=\lambda_{d d}+\lambda_{d u}$

> Approach according to EN/ISO 13849-1

Determination of the Performance Level requested (PLr)
This determination could be done using the risk graph.

S = Severity of injury

S1 = Slight (normally reversible injury)
S2 = Serious (normally irreversible) injury including death
F = Frequency and/or exposure time to the hazard
F1 = Seldom to less often and/or the exposure time is short
F2 = Frequent to continuous and/or the exposure time is long
$\mathbf{P}=$ Possibility of avoiding the hazard or limiting the harm
P1 = Possible under specific conditions
P2 = Scarcely possible
$\mathrm{L}=$ Low contribution to risk reduction $\mathrm{H}=$ High contribution to risk reduction

Determination of the PL achieved by the Safety-related parts of control systems (SRP/CS)

According to standard EN/ISO 13849-1, the Performance level (PL) is linked to a target failure value of probability of dangerous failure per hour for each safety related control function.

Performance level (PL)	Probability of a dangerous Failure per Hour
a	$10^{-5} \ldots<10^{-4}$
b	$3 \times 10^{-6} \ldots<10^{-5}$
c	$10^{-6} \ldots<3 \times 10^{-6}$
d	$10^{-7} \ldots<10^{-6}$
e	$10^{-8} \ldots<10^{-7}$

For a SRP/CS (or a combination of SRP/CS) designed according the requirements of the article 6, the PL could be estimated with the figure below after estimation of several factors such as system structure (categories), mechanism of failures detection [Diagnosis Coverage (DC)], components reliability [mean time to dangerous failure (MTTFd), Common Cause Failure (CCF)]...

Safety category level according to EN/ISO 13849-1

Functional safety and manufacturer reliability data of electromechanical components according to EN/ISO 13849-1 and EN/IEC 62061

Preventa, Harmony, Tesys -

B10d values of electromechanical components. The following values apply to high or continuous demand mode of operations used in machinery applications.
The B10d value is given to a lifetime of 10 years, but is mainly limited by mechinacal or contact wear.

Electromechanical components	B1O $_{d}$
Emergency stop push-button $\varnothing 22 \mathrm{~mm}$ XB4 \& XB5 (mushroom head)	1500000
Emergency stop trip wire switches XY2C	50000
Pushbutton $\varnothing 22$ mm XB4 \& XB5	25000000
Safety Limit switches with plunger or roller lever head XSC	50000000
Safety switches with key (guard switches) XCS	5000000
Safety switches with key (electromagnet guard switches) XCS	5000000
Safety switches with rotary opening head XCS	5000000
Safety coded magnetic switches XCS DMC/DMP/DMR at 10mA	50000000
contactors with nominal load	1300000
contactors with mechanical load	20000000

Certified safety chain solutions from an market leader in automation!

The concept:

Combination of products interoperating like a complete safety chain system to provide several safety functions for different safety levels which are certified by an external notified body

Its are made by:

> Layout of solution indicating performance level (PL), category and safety integrity level (SIL)
> Bill of materials and the system description file
> Example of calculation of the PL and SIL for each safety function
> Complete electrical diagram in detail
$>$ Certification of all product combination from a notify body

PL=c, Cat $2 /$ SIL 1

PL=e, Cat $4 /$ SIL 3

Be confident by using certified safety chain solutions provided by an automation leader

[^0]
Save cost and time with our Preventa offer...

Safe signal transmission

Protective devices

Acquire the information:

> Protective devices used as part of safeguarding systems to control the access under specific conditions of reduced risk.
> Light curtains and safety mats to detect approach to dangerous and limited areas.
> Two hand control stations and enabling switches for starting and enabling of dangerous movements.
> Generic protective measures - Emergency stop.

II
Light curtains

Two hand control stations and enabling switches

Safety mats

Emergency stop

Tripwire switch

Monitor and processing:

> Safety relays module with a specific safety function to monitor input signals from safety devices and to interface with contactors and drives by switch off the output safety contacts.
> Safety Controller: configurable safety device capable of centralized a generic range of safety monitoring functions.
> Safety PLCs: programmable electronic systems to carry out safety or non-safety related tasks for machinery and equipment.
> «As-i safety at work»: safety field bus network certified to work with safety devices to provide safety functions.

Stop the machine:

> Contactors to cut-off the electrical power supply to the motors with mechanically linked mirror auxiliary contacts integrated for the feedback loop diagnosis of safety modules.
> Variable Speed Drives controlled stopping of the
dangerous movement by safety certified power removal function integrated.
> Rotary switch disconnectors:
for equipment isolation from the electrical supply and for emergency stop by direct interruption of the power supply.

Variable
Speed Drives

1 Complete
 \& upgraded safety offer:

Improve safety level requirement

Save costs by optimizing electrical panel space
Reduce installation time by easy and quick wiring

Up to 50\% of space optimization

Increase the compactness by reducing size

SoSafety software

SoSafety software incorporates 4 software applications for machine safety. It is available in 4 complete versions and 3 update versions, adapted to your particular needs:

Protect Area Design

Safety mats configuration software

ASI SWIN

AS-Interface safety monitor configuration software.

XPS MCWIN

XPS MC safety controllers configuration software.

SoSafety comprising Protect Area Design (full version) and demo versions of the 3 other software applications.

Abstract

SoSafety comprising Protect Area Design and ASI SWIN (full versions) and demo versions of the other 2 software applications. Reference: ASISWIN2

ASISWIN update version comprising the new ASISWIN 2+, only if the previous version of Safety Suite V1 with ASISWIN2 version 2.0.3 (ref: ASISWIN) have been already installed. Reference: SSVASISWINUP

[^1][^2]
XPS MFWIN

XPS MF safety PLCs programming software.

Notes

(1) They outputs are not safety outputs.

Compact

-	Integrated (2xRJ45)	-	Integrated (2xRJ45)	-	Integrated (2xRJ45)
-	-	Integrated (1xRJ45)	Integrated (1xRJ45)	-	-
-	-	-		Integrated (SUB-D9)	Integrated (SUB-D9)

Removable screw terminal blocks or removable cage clamp terminal blocks coded with locating device | XPSMF4000 | XPSMF4002 | XPSMF4020 | XPSMF4022 | XPSMF4040 | XPSMF4042 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Safety PLC type	
Number of inputs/outputs	$\frac{\text { Digital (configurable with XPSMFWIN software) }}{\text { Sulsed (1) }}$
Memory capacity	$\frac{\text { Application }}{\text { Data }}$
Supply	$\frac{\text { On Ethernet network with safe Ethernet protocol }}{\text { On Modbus TCP/IP }}$
Communication	$\frac{\text { On Modbus (Serial link) }}{\text { On Profibus DP }}$
Input/output connections	
References	
(1) They	

References

Safety PLC type

Compact

Safety PLC type		Compact				
Number of inputs	Digital	20	20	24	24	24
	Analogue	-	-	8	8	8
	Counting	-	-	2	2	2
Number of outputs	Digital	8	8	8	8	8
	Analogue	-	-	-	-	-
	Relay	-	-	-	-	-
Memory capacity	Application	250 Kb				
	Data	250 Kb				
Supply		External 24 VDC supply (with separate protection conforming to IEC 61131-2)				
Communication	On Ethernet network (Modbus TCP/IP)	Integrated (4xRJ45)				
	On Modbus (Serial link)	Integrated (SUB-D9)	-	-	Integrated (SUB-D9)	-
	On Profibus DP	-	-	-	-	Integrated (SUB-D9)
Input/output connections		Removable screw terminal blocks, coded with locating device				
References (2)		XPSMF3022	XPSMF31222	XPSMF3502	XPSMF3522	XPSMF3542

(2) Products referenced XPSMF30/MF31/MF35 are marked Himatrix F30, F31 and F35.
For all XPSMF PLCs

- Maximum category of the solution Category 4
(EN 954-1)
- Max performance level for the solution PL e
(EN ISO 13849-1)
- Max safety integrity level for the solution.......................SIL 3
(EN IEC 62061)

Type		CPU	Power supply module	Rack with 6 slots	Software
Memory capacity	Application	500 Kb	-	-	For XPSMF PLCs
	Data	500 Kb	-	-	
Supply		-	External 24 VDC, integrated	-	
Communication	On Ethernet network (Modbus TCP/IP)	Integrated (4xRJ45)	-	-	Complete version
	On Modbus bus (Serial link)	Integrated (SUB-D9)	-	-	SSV1XPSMFWIN
Power connections		Screw terminal blocks	Screw terminal blocks	-	(1)
Dimensions W x D x H		-	-	$257 \times 239 \times 310 \mathrm{~mm}$	Update version
References		XPSMFCPU22	XPSMFPS01	XPSMFGEH01	SSVXPSMFWINUP

Decentralised safety I/O modules

1/0 module type		Inputs/Outputs Analogue	Outputs Digital		Relay	
Number of inputs	Analogue	8	-	-	-	-
Number of outputs	Digital	-	4	16	-	-
	Analogue (not safety)	4	-	-	-	-
	Relay	-	-	-	8	16
Supply		External 24 VDC supply (with separate protection conforming to IEC 61131-2)				
Communication	On Safe Ethernet network (Modbus TCP/IP)	Integrated (2xRJ45)				
Input/output connections References (2)		Removable screw terminal blocks, coded with locating device				
		XPSMF3AIO8401	XPSMF2D0401	XPSMF2D01601	XPSMF2DO801	XPSMF2DO1602

[^3]Preventa
Automation

Maximum category of the solution (EN 954-1)	
Number of circuits	Safety
	Additional
Display (number of LEDs)	
Width of housing	
Communication interface	

Safety controllers for monitoring emergency stops and limit switches

Category 4			
$2 \times 2 \mathrm{~N} / \mathrm{O}+6$ solid-state			$2 \times 3 \mathrm{~N} / \mathrm{O}$ per function
-			3 solid-state
30			12
74 mm			45 mm
Modbus	Modbus, CANopen	Modbus, Profibus DP	-

Universal solutions: safety controllers (for monitoring several safety functions simultaneously)

Supply voltage	24 VDC	XPSMC32Z (1) (2)	XPSMC32ZC (1) (2)	XPSMC32ZP (1) (2)	XPSMP11123P (3)

coded magnetic switches enabling switch

Maximum category of the solution (EN 954-1)	
For monitoring	
Number of circuits	Safety
Display (number of LEDs)	
Width of housing	
Communication interface	

Category 4			
magnetic switches and enabling switch			
$2 \times 2 \mathrm{~N} / \mathrm{O}+6$ solid-state			$2 \times 3 \mathrm{~N} / \mathrm{O}$ per function
-			3 solid-state
30			12
74 mm			45 mm
Modbus	Modbus, CANopen	Modbus, Profibus DP	-

Universal solutions: safety controllers (for monitoring several safety functions simultaneously)

Supply voltage	24 VDC	XPSMC32Z (1)(2)	XPSMC32ZC (1)(2)	XPSMC32ZP (1)(2)	XPSMP11123P (3)

safety mats and edging

Universal solutions: safety controllers (for monitoring several safety functions simultaneously)

Supply voltage	24 VDC	XPSMC32Z (1)(2)	XPSMC32ZC (1)(2)	XPSMC32ZP (1)(2)	

(1) Version with 32 inputs. For version with 16 inputs, replace 32 in the reference by 16 (example: XPSMC32Z becomes XPSMC16Z).
(2) Configuration software XPSMCWIN (complete version) or SSVXPSMCWINUP (update version), connecting cable, adaptor and set of screw terminal plug-in connectors XPSMCTS16 and XPSMCTS32 or set of spring clip terminal plug-in connectors XPSMCTC16 and XPSMCTC32 to be ordered separately.
(3) For fixed connector version, delete the letter P from the end of the reference (example: XPSMP11123P becomes XPSMP11123).

Safety modules for monitoring emergency stops and limit switches

Maximum category of the solution

(EN 954-1)

Number of circuits

Safety
Additional

Category 3
$3 \mathrm{~N} / \mathrm{O}$
1 solid-state
2
22.5 mm

Category 4

3N/O	3N/O	7N/O	3N/O+3N/O time del.	2N/O+3N/O time del.
-	$1 \mathrm{~N} / \mathrm{C}+4$ solid-state	2N/C +4 solid-state	3 solid-state	4 solid-state
3	4	4	11	4
22.5 mm	45 mm	90 mm	45 mm	45 mm

Optimum solutions: safety modules (for monitoring 1 safety function)

Supply voltage (1)	24 VDC	-	-	-	-	XPSAV11113P	-
	$24 \mathrm{VAC} / \mathrm{DC}$	XPSAC5121P	XPSAF5130P	XPSAK311144P	XPSAR311144P	-	XPSATE5110P
	230 VAC	-	-	-	-	-	XPSATE3710P

(1) For version with non removable terminal block, delete the letter P from the end of the reference (example: XPSAV11113P becomes XPSAV11113).

coded magnetic switches enabling switch

Maximum category of the solution (EN 954-1)	
For monitoring	
Number of circuits	Safety
Additional	
Display (number of LEDs)	
Width of housing	

Category 4

2 coded magnetic switches maximum	6 coded magnetic switches maximum	enabling switch
2N/O	2N/O	2N/O
2 solid-state	2 solid-state	2 solid-state
3	15	3
22.5 mm	45 mm	22.5 mm

Optimum solutions: safety modules (for monitoring 1 safety function)

Supply voltage	24 VDC	XPSDMB1132P (1)	XPSDME1132P (1)	XPSVC1132P (1)

(1) For version with non removable terminal block, delete the letter P from the end of the reference (example: XPSDMB1132P becomes XPSDMB1132).

safety mats and edging

Maximum category of the solution (EN 954-1)	
Number of circuits	Safety
	Additional
Display (number of LEDs)	
Width of housing	

Optimum solutions: safety modules (for monitoring 1 safety function)

Supply voltage	24 VAC/DC	XPSAK311144P (1)

(1) For version with non removable terminal block, delete the letter P from the end of the reference (example: XPSAK311144P becomes XPSAK311144).

Preventa
 Automation

For all XPSMC controllers

Safety controllers for monitoring two-hand control

Universal solutions: safety controllers (for monitoring several safety functions simultaneously)

light curtains

	Universal					
Maximum category of the solution (EN 954-1)		Categ				2 light curtains monitoring max.
Number of circuits	Safety	$2 \times 2 \mathrm{~N} / \mathrm{O}$			2x3N/O per function	6 PNP solid-state
	Additional	-			3 solid-state	1 PNP + 1 NPN
Display (number of LEDs)		30			12	$14+$ double display units
Width of housing		74 mm			45 mm	100 mm
Integral Muting function		Yes			No	Yes
Communication interface		Modbus	Modbus, CANopen	Modbus, Profibus DP	-	-

Universal solutions: safety controllers (for monitoring several safety functions simultaneously)

(1) Version with 32 inputs, for version with 16 inputs, replace 32 in the reference by 16 (example: XPSMC32Z becomes XPSMC16Z).
(3) For version with non removable terminal block, delete the letter P from the end of the reference (example: XPSMP11123P becomes XPSMP11123).
(4) Removable terminal blocks

zero speed, time delay

9	Maximum category of the solution (EN 954-1)		Category 4		
	For monitoring		Motor zero speed condition		
	Number of circuits	Safety	$2 \times 2 \mathrm{~N} / \mathrm{O}+6$ solid-state		
		Additional	-		
	Display (number of LEDs)		30		
	Width of housing		74 mm		
	Communication interface		Modbus	Modbus, CANopen	Modbus, Profibus DP

Universal solutions: safety controllers (for monitoring several safety functions simultaneously)

Supply voltage	24 VDC	XPSMC32Z (5) (2)	XPSMC32ZC (5) (2)	

[^4](5) Plug-in connector version only.

Safety modules for monitoring two-hand control

Maximum category of the solution
(EN 954-1)
Number of circuits

Display (number of LEDs)
Width of housing

Category 1 (type IIIA to EN 574)
1N/O
$1 \mathrm{~N} / \mathrm{C}$
2
22.5 mm

Category 4
(type IIIC to EN 574)

$2 N / O$	$2 N / O$
$1 N / C$	2 solid-state
3	3

45 mm

Optimum solutions: safety modules (for monitoring 1 safety function)

Supply voltage	24 VDC	-	XPSBC1110	XPSBF1132P (1)
	24 VAC/DC	XPSBA5120	-	-

(1) For version with non removable terminal block, delete the letter P from the end of the reference (example: XPSBF1132P becomes XPSBF1132).

light curtains

Maximum category of the solution (EN 954-1)	
Number of circuits	Safety
	Additional
Display (number of LEDs)	
Width of housing	
Integral Muting function	

Category 2	
$2 \mathrm{~N} / \mathrm{O}$	
4 solid-state	
4	
45 mm	
Yes	

Category 4		
3N/O	3N/O	7N/O
-	1N/C + 4 solid-state	1N/C + 4 solid-state
3	4	4
22.5 mm	45 mm	90 mm
No	No	No

Optimum solutions: safety modules (for monitoring 1 safety function)

| Supply voltage 24 VDC | XPSCM1144P (1) | - | - | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 24 VAC/DC | - | XPSAFL5130P (1) | XPSAK311144P (1) | XPSAR311144P (1) |

(1) For version with non removable terminal block, delete the letter P from the end of the reference (example: XPSCM1144P becomes XPSCM1144).

zero speed, time delay and lifts

Maximum category of the solution (EN 954-1)	
For monitoring	
Number of circuits	Safety
	Additional
Display (number of LEDs)	
Width of housing	

Category 3			Category 4
Motor zero speed condition	Safety time delay		Lifts
$1 \mathrm{~N} / \mathrm{O}+1 \mathrm{~N} / \mathrm{C}$	1N/O time delay	1N/O pulse	2N/O
2 solid-state	2N/C + 2 solid-state	2N/C + 2 solid-state	2 solid-state
4	4	4	4
45 mm	45 mm	45 mm	45 mm

Optimum solutions: safety modules (for monitoring 1 safety function)

| Supply voltage | 24 VDC | XPSVNE1142P (1) | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 24 VAC/DC | - | XPSTSA5142P (2) | XPSTSW5142P (2) | XPSDA5142 |

[^5]
Preventa

AS-Interface safety at work
For all ASISAFEMON monitors

- Max performance level for the solutionPL e
(EN ISO 13849-1)
- Max safety integrity level for the solution.......................SIL 3
(EN IEC 62061)

Safety monitors

Monitors

Maximum category of the solution (EN 954-1)	
Number of circuits	Safety
Auxiliary	
Display (number of LEDs) Width of housing	
AS-Interface profile	
Master module compatibility	
References of monitor with	$\frac{\text { enhanced functions }}{\text { standard functions }}$

Category $\mathbf{4}$	
2N/O	2×2 N/O
1 solid-state	2 solid-state
5	8
45 mm	45 mm
S.7.F	S.7.F
V1 / V2.1	V1 / V2.1
ASISAFEMON1B	ASISAFEMON2B
ASISAFEMON1	ASISAFEMON2

Configuration software, adjustment terminal and AS-Interface analyser

Type		"Safety Suite" configuration software	Adjustment terminal (2)	AS-Interface Analyser - Analysis and diagnostics of AS-Interface
Multilingual		EN / FR / DE / ES / IT / PT	-	- Analysis and diagnostics of AS-Interface line and Safety at Work - Complements the diagnostic functions of the local AS-Interface master
For use with		ASISAFEMON1/2, ASISAFEMON1B/2B	-	
Media		CD-ROM PC	-	
Environment		Windows	-	- Maintenance or validation of AS-Interface lines
Degree of protection		-	IP 40	
Supply		-	$4 \times$ LR6 batteries	- Print-out of AS-Interface line tests
Dimensions W x D x H References	Complete version	ASISWIN2	$70 \times 50 \times 170 \mathrm{~mm}$ ASITERV2	$92 \times 28 \times 139 \mathrm{~mm}$
				ASISA01
	Update version (3)	SSVASISWINUP	-	-
(1) CD-ROM with hardware and software user guides.				
(2) For addressing safety (3) To be ordered only if a	es, use the infrared s version of ASISWIN	ERIR1 or the standard adaptor AS ready installed.	ISAD1.	

Accessories

Safety interfaces

For Ø 22 Emergency stop

(1) For installation in enclosures.
(2) IDC: Insulation Displacement Connector.
(3) Head to be ordered separately. For other heads, please refer to www.schneider-electric.com.
(4) Turn to release latching mushroom head.
(5) Key release ($n^{\circ} 455$) latching mushroom head.

For other safety products with M12 connector outputs or ISO M16/20

Type of entry	$2 \times \mathrm{M} 12$ entries (6)	1 x M12 entry	1 x ISO M16 entry (7)
Degree of protection	IP 67	IP 67	IP 67
Dimensions W x D H	$40 \times 40 \times 58 \mathrm{~mm}$	$40 \times 40 \times 58 \mathrm{~mm}$	$40 \times 40 \times 57.5 \mathrm{~mm}$
AS-Interface profile	S.O.B.F.F	S.O.B.F.F	S.O.B.F.F
Consumption from AS-Interface	45 mA	45 mA	45 mA
Infrared addressing	Yes	Yes	Yes
Connection on AS-Interface	IDC (1)	IDC (1)	IDC (1)
References	ASISSLC2	ASISSLC1	ASISSLLS

(6) For connection using 2 pre-wired connectors, or 1 pre-wired connector +1 connector.
(7) For $1 \times$ ISO M20 entry, use adaptor shown below.

Accessories

Preventa

Detection

Safety switches and actuators

Locking on de-energisation of solenoid (1)

Type XCSLE

$3 \times$ ISO M20 cable entries
$0,1 \mathrm{~m} / \mathrm{s} \rightarrow 0,5 \mathrm{~m} / \mathrm{s}$
IP 67 + IP 66
AC 15, B $300 / D C 13, Q 300$
$43,6 \times 205 \times 50,6 \mathrm{~mm}$ 24 VAC/DC
XCSLE2525312 Θ XCSLE2727312 Θ XCSLE3535312 Θ

XCSLE3737312 Θ

Type XCSMP pre-cabled, $\mathrm{L}=2 \mathrm{~m}$ $0,05 \mathrm{~m} / \mathrm{s} \rightarrow 1,5 \mathrm{~m} / \mathrm{s}$ IP 67
AC 15, C $300 /$ DC 13, Q 300

AC 15, C $300 / \mathrm{DC} 13, \mathrm{Q} 300$	AC 15, A $300 / \mathrm{DC} 13, \mathrm{Q} 300$	
$30 \times 15 \times 87 \mathrm{~mm}$	$30 \times 30 \times 93,5 \mathrm{~mm}$	$52 \times 30 \times 114,5 \mathrm{~mm}$
-	-	-
XCSMP59L2 $(3) \Theta$	XCSPA592 Θ	-
XCSMP79L2 $(3) \Theta$	XCSPA792 Θ	-
XCSMP70L2 $(3) \Theta$	XCSPA892 Θ	XCSTA592 Θ
-	-	-
XCSMP80L2 $(3) \Theta$	XCSPA992 Θ	XCSTA792 Θ
-	XCSPA492 Θ	-

Type XCSPA and TA
1xISO M16 entry. (2)
2xISO M16 entries. (2)
$0,1 \mathrm{~m} / \mathrm{s} \rightarrow 0,5 \mathrm{~m} / \mathrm{s}$
IP 67

XCSPA492 Θ

(1) For locking on energisation of solenoid, please refer to www.schneider-electric.com.
(2) With entry for $n^{\circ} 11$ (Pg 11) cable gland, replace the last digit in the reference by 1 (example: XCSPA592 becomes XCSPA591).
(1) For locking on energisation of solenoid, please refer to www.schneider-electric.com.
(2) With entry for $n^{\circ} 11$ ($\operatorname{Pg} 11$) cable gland, replace the last digit in the reference by 1 (example: XCSPA592 becomes XCSPA591).
(3) For other models, please refer to www.schneider-electric.com.

Metal switches	Type XCSA/B/C $1 \times$ ISO M20 cable entry (2)			Type XCSLF $3 \times$ ISO M20 cable entries	
Actuation speed ($\min \rightarrow$ max)	$0.1 \mathrm{~m} / \mathrm{s} \rightarrow 0.5 \mathrm{~m} / \mathrm{s}$			$0.1 \mathrm{~m} / \mathrm{s} \rightarrow 0.5 \mathrm{~m} / \mathrm{s}$	
Degree of protection	IP 67			IP 67 + IP 66	
Rated operational characteristics (conforming to EN IEC 60947-5-1)	AC 15, A $300 / \mathrm{DC} 13, \mathrm{Q} 300$			AC 15, B $300 / \mathrm{DC} \mathrm{13}$,	
Dimensions (body + head) W x $\mathrm{D} \times \mathrm{H}$	$40 \times 44 \times 113.5 \mathrm{~mm}$	$52 \times 44 \times 113.5 \mathrm{~mm}$	$52 \times 44 \times 113.5 \mathrm{~mm}$	$43,6 \times 205 \times 50,6 \mathrm{~mm}$	
Solenoid supply voltage	-	-	-	$24 \mathrm{VAC/DC}$	24 VAC/DC
Complete switch $\quad \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O} 2 \mathrm{~N} / \mathrm{O}$ stag. slow break	XCSA502 Θ	XCSB502 Θ	XCSC502 Θ	XCSLF3535312 Θ	XCSLF3535412 Θ
N/C+N/C+N/O N/O stag. slow break	XCSA702 Θ	XCSB702 Θ	XCSC702 Θ	XCSLF3737312 Θ	XCSLF3535412 Θ
N/C+N/O N/O stag. slow break				XCSLF2525312 Θ	
N/C+N/C snap break				XCSLF2727312 Θ	

Actuation speed (min \rightarrow max)
Degree of protection
Rated operational characteristics (conforming to EN IEC 60947-5-1)
Dimensions (body + head) W x D x H
Solenoid supply voltage

Metal switches	Type XCSA/B/C 1 x ISO M20 cable entry (2)			Type XCSLF $3 \times$ ISO M20 cable entries	
Actuation speed ($\min \rightarrow$ max)	$0.1 \mathrm{~m} / \mathrm{s} \rightarrow 0.5 \mathrm{~m} / \mathrm{s}$			$0.1 \mathrm{~m} / \mathrm{s} \rightarrow 0.5 \mathrm{~m} / \mathrm{s}$	
Degree of protection	IP 67			IP $67+$ IP 66	
Rated operational characteristics (conforming to EN IEC 60947-5-1)	AC 15, A $300 / \mathrm{DC} 13, \mathrm{Q} 300$			AC 15, B $300 /$ DC 13, Q 300	
Dimensions (body + head) W x $\mathrm{D} \times \mathrm{H}$	$40 \times 44 \times 113.5 \mathrm{~mm}$	$52 \times 44 \times 113.5 \mathrm{~mm}$	$52 \times 44 \times 113.5 \mathrm{~mm}$	$43,6 \times 205 \times 50,6 \mathrm{~mm}$	
Solenoid supply voltage	-	-	-	24 VAC/DC	24 VAC/DC
Complete switch $\quad \mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O} 2 \mathrm{~N} / \mathrm{O}$ stag. slow break	XCSA502 Θ	XCSB502 Θ	XCSC502 Θ	XCSLF3535312 Θ	XCSLF3535412 Θ
N/C+N/C+N/O N/O stag. slow break	XCSA702 Θ	XCSB702 Θ	XCSC702 Θ	XCSLF3737312 Θ	XCSLF3535412 Θ
N/C+N/O N/O stag. slow break				XCSLF2525312 Θ	
N/C+N/C snap break				XCSLF2727312 Θ	

(2) For locking on energisation of solenoid, please refer to www.schneider-electric.com.
(2) With entry for $n^{\circ} 13(\operatorname{Pg} 13.5)$ cable gland, replace the last digit in the reference by 1 (example: XCSA502 becomes XCSA501).

Accessories

For safety switches XCSA/B/C/LE/LF

Actuators

References

XCSZ01

Wide actuator
Pivoting actuator

Safety switches with rotary lever or spindle

(1) With entry for $n^{\circ} 11$ (Pg 11) cable gland, replace the last digit in the reference by 1 (example: XCSPL592 becomes XCSPL591).
(2) For entry for ISO M20 cable gland, also order adaptor DE9RA1620 (sold in lots of 5).

(1) With entry for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland, replace the last digit in the reference by 1 (example: XCSTL582 becomes XCSTL581).

Miniature switches
Maximum actuation speed
Minimum force or torque (actuation / positive opening)
Degree of protection
Dimensions (body + head) W x D x H Complete switch $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ snap action $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ slow break

Type XCSM, metal
pre-cabled, L = 1 m (1)

$0.5 \mathrm{~m} / \mathrm{s}$	0.5
$8.5 \mathrm{~N} / 42.5 \mathrm{~N}$	7
$\mathrm{IP} 66+\mathrm{IP} 67+$ IP 68	IP
$30 \times 16 \times 60 \mathrm{~mm}$	30
XCSM3910L1 Θ	X
XCSM3710L1 Θ	X

(1) For a 2 m long cable, replace the last digit of the reference by 2 (example: XCSM3910L1 becomes XCSM3910L2). For a 5 m long cable, replace the last digit of the reference by 5 (example: XCSM3910L1 becomes XCSM3910L5).

(2) For Pg 13.5 and $1 / 2^{\prime \prime}$ NPT cable entries, refer to www.schneider-electric.com.

Preventa
Detection

Coded magnetic technology
Plastic coded magnetic system
(1)

SIL2/Category 3 XCSDM3	Sil3/Category 4 XCSDM4
Face to face, face to side, side to side	
Pre-cabled: IP66 / IP67, IP69K, connector: IP67	
2 solid-state output PNP/NO, 1,5 A / 24VDC (2 A up to $\left.60^{\circ} \mathrm{C}\right)$	
Ub: $24 \mathrm{VDC}+10 \%-20 \%$	
$34 \times 27 \times 100 \mathrm{~mm}$	
Sao $=10 \mathrm{~mm} /$ Sar= 20 mm	XCSDM480102
XCSDM379102	XCSDM480105
XCSDM379105	XCSDM480110
XCSDM379110	XCSDM4801M12
XCSDM3791M12	

Coded magnetic

Plastic switches
Switches for actuation
Degree of protection
Type of contact
Rated operational characteristics
Dimensions W x D x H
Operating zone (4) Switch with coded magnet $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}, \mathrm{N} / \mathrm{C}$ staggered $\mathrm{N} / \mathrm{O}, 1 \mathrm{~N} / \mathrm{O}$ staggered $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}, 1 \mathrm{~N} / \mathrm{C}$ staggered $\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{O}, 1 \mathrm{~N} / \mathrm{O}$ staggered

Type XCSDM coded magnetic Pre-cabled, L = 2 m		
Face to face, face to side, side to side		Face to face
IP 66 + IP 67		
REED		
$\mathrm{Ue}=24 \mathrm{VDC}$, $\mathrm{le}=100 \mathrm{~mA}$		
$16 \times 7 \times 51 \mathrm{~mm}$	$25 \times 13 \times 88 \mathrm{~mm}$	$\mathrm{M} 30 \times 38,5 \mathrm{~mm}$
$\text { Sao }=5 / \text { Sar }=15$ XCSDMC5902	Sao $=8 /$ Sar $=2$ XCSDMP5902	XCSDMR5902
XCSDMC7902	XCSDMR7902	XCSDMR7902
-	XCSDMP5002	-
-	XCSDMP7002	-

(2) For version with LED indicator, replace the last 0 in the reference by 1 (example: XCSDMC5902 becomes XCSDMC5912).
(3) For associated pre-wired female connectors, please refer to the "Safety solution" catalogue.

Preventa

Detection
(1) For simplification of installation, see the "Protect Area design" software configuration tool. Reference: SISCD104200

Maximum category usage (EN 954-1)	Category 3			
Degree of protection	IP 67			
Response time (s)	Mat itself: 20 ms , with module: XPSAK $\leq 40 \mathrm{~ms}$, XPSMP < 30 ms			
Sensitivity	Single mat $>20 \mathrm{~kg} /$ Group of mats $>35 \mathrm{~kg}$			
Maximum load	2000 N/cm ${ }^{2}$			
Connection (2)	By M8 jumper cable (1 male / 1 female), $\mathrm{L}=100 \mathrm{~mm}$			
Dimensions W x D x H	$500 \times 500 \times 11 \mathrm{~mm}$	$500 \times 750 \times 11 \mathrm{~mm}$	$750 \times 750 \times 11 \mathrm{~mm}$	$750 \times 1250 \times 11 \mathrm{~mm}$
References	XY2TP1	XY2TP2	XY2TP3	XY2TP4

(2) For associated jumper cable and pre-wired connector, please refer to www.schneider-electric.com

		Accessories								
Rails (set of 2)	Length	194 mm	394 mm	444 mm	494 mm	644 mm	694 mm	744 mm	1194 mm	1244 mm
References		XY2TZ10	XY2TZ20	XY2TZ30	XY2TZ40	XY2TZ50	XY2TZ60	XY2TZ70	XY2TZ80	XY2TZ90

Corners and rail connectors	External corners (set of 4)	Internal corner + external corner	Rail connectors, $\mathrm{L}=56 \mathrm{~mm}$ with outlet for cable (set of 2)	Rail connectors, $L=6 \mathrm{~mm}$ (set of 2)
References	XY2TZ4	XY2TZ5	XY2TZ1	XY2TZ2

Selection guidance software

For light curtains
Reference

Protect Area Design (2)

Reference

XUSLT, XUSLM

 XUSLPDM(2) "Protect Area Design" sofware is integrated in SafetySuite V2

Light curtains

Type 2 conforming to IEC 61496-2

Light curtain functions

- Auto/Manual
- Monitoring of external switching devices
(EDM: External Devices Monitoring),
- LED display of operating modes

Type Slim range		Multi-beam, in Manual starting	Automatic starting
Nominal sensing distance (Sn)		0.3... 15 m	
Detection capacity		30 mm "hand"	
Number of safety circuits		2 solid-state PNP	
Response time (depending on model)		$14 . .24 \mathrm{~ms}$	
Connection		M12 Connector	
Height protected (mm)	150	XUSLNG5D0150	XUSLNG5C0150
	300	XUSLNG5D0300	XUSLNG5C0300
	450	XUSLNG5D0450	XUSLNG5C0450
	600	XUSLNG5D0600	XUSLNG5C0600
	750	XUSLNG5D0750	XUSLNG5C0750
	900	XUSLNG5D0900	XUSLNG5C0900
	1050	XUSLNG5D1050	XUSLNG5C1050
	1200	XUSLNG5D1200	XUSLNG5C1200
	1350	XUSLNG5D1350	XUSLNG5C1350
	1500	XUSLNG5D1500	XUSLNG5C1500

		Accessories		
Cable length		3 m	10 m	30 m
Pre-wired connector for XUSLN	For receiver	XSZNCR03	XSZNCR10	XSZNCR30
(screened cable)	For transmitter	XSZNCT03	XSZNCT10	XSZNCT30

Type 2 conforming to IEC 61496-1 et 2

Light curtain functions

- Auto/Manual,
- Monitoring of external switching devices
(EDM: External Devices Monitoring),
- LED display of operating modes
- Integral muting function.

| Type | |
| :--- | :--- | | Height protected (conforming to prEN 999) | |
| :--- | :--- |
| Nominal sensing distance (Sn) | |
| Number of circuits | Safety |

Single-beam, infrared transmission

$750 \ldots 1200 \mathrm{~mm}$ (1 to 4 beams)
8 m
$2 \mathrm{~N} / \mathrm{O}$
4 solid-state
$<25 \mathrm{~ms}$
XPSCM1144P (1)
XU2S18PP340L5 (2)
XU2S18PP340D (2)

(1) For version with non removable terminal block, delete the letter P from the end of the reference. Example: XPSCM1144P becomes XPSCM1144).
(2) For alignment at 90° to the mounting axes, insert the letter W in the reference before the last letter. Example: XU2S18PP340L5 becomes XU2S18PP340WL5).

Preventa Detection

Functions accessible by cabling alone - Automatic start

■ Auxiliary output (PNP, status signalling)
■ Alignment aid by display of each light beam broken

- LED display of operating modes and faults
Type
Nominal sensing distance (Sn)

Detection capacity

Number of circuits	Safety
Auxiliary (alarm)	

Response time (depending on model)
Connection
Functions accessible via programming and diagnostic module
(1) Height protected (mm)

$\frac{280}{320}$
360
440
520
600
680
720
$\frac{880}{1040}$
1200
1400
1560

Light curtains
Type 4 conforming to IEC 61496-2

Multi-beam, infrared transmission
Light curtains
$0,3 \ldots 7$ or 3 m with PDM Box (2)
14 mm "finger"
PNP
2 solid-state PNP
$23 . . .41 \mathrm{~ms}$
M12 connector

- Auto/Manual

■ Monitoring of external switching devices
(EDM: External Device Monitoring)

- Test (MTS : Monitoring Test Signal),
- Light beam coding (A or B)
- Sensing distance (short, long)
- Programming and downloading of configuration settings, via programming and diagnostic module (PDM)
- Display of operating modes and faults by LED and/or PDM (2)

Transmitter + receiver
(1) Other height protected, see catalog:
"Preventa safety Solutions"
(2) PDM module : Programming and Diagnostic Module, see following page.

Type	
Detection capacity	
Transmitter + receiver	Height protected (mm)
	$\frac{280}{320}$
	$\frac{360}{440}$
	$\frac{520}{600}$
	$\frac{680}{720}$
	$\frac{880}{1040}$
1400	
1560	

Segments for cascadable light curtains

14 mm "finger"	30 mm "hand"
XUSLDSQ6A0280	-
XUSLDSQ6A0320	-
-	XUSLDSY5A0360
XUSLDSQ6A0440	-
XUSLDSQ6A0520	XUSLDSY5A0520
XUSLDSQ6A0600	-
-	XUSLDSY5A0680
XUSLDSQ6A0720	-
XUSLDSQ6A0880	XUSLDSY5A0880
-	XUSLDSY5A1040
-	XUSLDSY5A1400
-	XUSLDSY5A1560

Type 4 conforming to IEC 61496-2

- Auto/Manual/Manual $1^{\text {st }}$ cycle
\square Monitoring of external switching devices (EDM: External Devices Monitoring),
- Test input (MTS: Monitoring Test Signal),
- Alignment aid by LED display of each light beam broken, - LED display of operating modes and alarms,
- Coding of the beams

Type Compact range		Single-beam and multi-beam, infrared transmission	
		Transmitter/receiver	Transmitter/passive receiver
Nominal sensing distance (Sn)		$0.8 \ldots 20$ ou 70 m (according to config)	0.8... 8 m
Detection capacity		Body	
Number of circuits	Safety	2 solid-state PNP	
	Auxiliary (alarm or following)	1 solid-state PNP	
Response time (depending on model)		16... 24 ms	
Connection		M12 Connector (1)	M12 Connector
Beam	Interval Number	XUSLPZ1AM	-
	300 mm	XUSLPZ4A300M	-
	5	XUSLPZ5A300M	-
	6	XUSLPZ6A300M	-
	400 mm	XUSLPZ3A400M	-
	500 mm -	XUSLPZ2A500M	XUSLPB2A500M
	3	XUSLPZ3A500M	-
	600 mm	XUSLPZ2A600M	XUSLPB2A600M

(1) Light curtain with M12 connector output, for terminal block output, replace \mathbf{M} from the end of the reference by B. Example : XUSLPZ1AM becomes XUSLPZ1AB

Cabling accessories

Type			Pre-wired connectors						
Cable length Pre-wired connector for	XUSLT	For receiver	5 m XSZTCR05		10 m XSZTCR10		$15 \mathrm{~m}$ XSZTCR15	$30 \mathrm{~m}$ XSZTCR30	
		For transmitter	XSZTCT05		XSZTCT10		XSZTCT15	XSZTCT30	
	XUSLB/XUSLDM	For receiver	XSZBCR05		XSZBCR10		XSZBCR15	XSZBCR30	
		For transmitter	XSZBCT05		XSZBCT10	XSZBCT15		XSZBCT30	
	XUSLP	For receiver	XSZPCR05		XSZPCR10	XSZPCR15		XSZPCR30	
		For transmitter	XSZPCT05		XSZPCT10	XSZPCT15		XSZPCT30	
Type			Jumper cables for segments XUS LDS						
Cable length			0,3 m XSZDCR003	$0,5 \mathrm{~m}$ XSZDCR005	1 m XSZDCR010	$\begin{aligned} & 2 \mathrm{~m} \\ & \text { XSZDCR020 } \end{aligned}$	$2 \mathrm{~m}$ XSZDCR030	5 m XSZDCR050	10 m XSZDCR100
		For transmitter	XSZDCT003	XSZDCT005	XSZDCT010	XSZDCT020	XSZDCT030	XSZDCT050	XSZDCT100

Setting-up accessories

Type
For light curtains
Reference

Programming and Diagnostic Module	Laser alignment tool
XUSLB / XUSLDM XUSLPDM	All type XUSL XUSLAT1

Preventa

Operator dialog

Emergency stops
$\varnothing 22$ trigger action latching pushbuttons

Key release
(key n° 455)

Turn to release

Turn to release

Metal	
0.3	
$10 \mathrm{gn} / 5 \mathrm{gn}$	
IP 65	
AC 15, A 600 / DC 13, Q 600 (conforming to EN IEC 6	
$\varnothing 40 \times 82 \mathrm{~mm}$ XB4BS8445	$\varnothing 40 \times 104 \mathrm{~mm}$ XB5AS8445
XB4BS84441	-

Eonix
 Ø 22 trigger action latching pushbutton stations

	$\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$ contact
	$\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{C}$ contact
	$\mathrm{N} / \mathrm{C}+\mathrm{N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$ contact

Turn to release

Key release (key no 455)

Enclosure
Mechanical life (millions of operating cycles) Shock / vibration resistance Degree of protection Rated operational characteristics Dimensions W x D x H Contact $\frac{N / C+N / O}{2 N / C+1 ~ N / O}$

Plastic	
$2 \times$ ISO M20 cable entries or $\mathrm{n}^{\circ} 13(\operatorname{Pg} 13.5)$ cable gland	
0.1	0.1

0.1	0.1
$10 \mathrm{gn} / 5 \mathrm{gn}$	$10 \mathrm{gn} / 5 \mathrm{gn}$
IP 65	IP 65
AC 15, A $600 /$ DC 13, Q 600 (conforming to EN IEC $60947-5-1$)	
$68 \times 91 \times 68 \mathrm{~mm}$	$68 \times 113 \times 68 \mathrm{~mm}$
XALK178E	XALK188E
XALK178F	XALK188F
-	XALK188G

Accessories

Type		
Colour		
Dimensions		
Références	Marking:	"Emergency stop"
		"Arrêt d'urgence"

| Étiquettes | | Padlocking kit | Bellows seals | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Red with white lettering
 $30 \times 40 \mathrm{~mm}(1)$ | Yellow with black lettering | Yellow | Red Silicone | Black EPDM |
| ZBY2130 | $\varnothing 60 \mathrm{~mm}$ | | | |
| ZBY2330 | ZBY9130 | - | - | - |
| ZBY2230 | ZBY9330 | - | - | - |
| - | ZBY9230 | - | - | - |

[^6]
Emergency stops
 Cable (tripwire) operated

(1) With entry for $n^{\circ} 13$ (Pg 13.5) cable gland, delete H 29 from the end of the reference (example: XY2-CH13250H29 becomes XY2-CH13250).

Booted pusbutton reset

Key release pushbutton reset (key n° 421)

For operating cable length $\leq 50 \mathrm{~m}$	Latching, without indicator light $3 \times$ ISO M20 cable entries or $n^{\circ} 13$ ($\operatorname{Pg} 13.5$) cable gland			
Mechanical life (millions of operating cycles)	0.01		0.01	
Shock / vibration resistance	$50 \mathrm{gn} / 10 \mathrm{gn}$		$50 \mathrm{gn} / 10 \mathrm{gn}$	
Degree of protection	IP 65		IP 65	
Rated operational characteristics	AC-15, A300 / DC-13, Q300 (conforming to EN IEC 60947-5-1)			
Dimensions W x D H	$229 \times 82 \times 142 \mathrm{~mm}$		$229 \times 82 \times 142 \mathrm{~mm}$	
Operating cable length	$\leq 50 \mathrm{~m}$		$\leq 50 \mathrm{~m}$	
Operating cable anchoring point	To left	To right	To left	To right
Contact 1 "N/C + N/O" slow break	XY2CE2A250	XY2CE1A250	XY2CE2A450	XY2CE1A450
1 "N/C + N/C" slow break	XY2CE2A270	XY2CE1A270	XY2CE2A470	XY2CE1A470
2 "N/C + N/O" slow break	XY2CE2A290 (2)	XY2CE1A290 (2)	XY2CE2A490 (2)	XY2CE1A290 (2)

(2) With $24 \mathrm{~V}, 48 \mathrm{~V}, 130 \mathrm{~V}$ pilot lights, BA9S bulb not included, add 6 at the end of the reference. (example : XY2CE1A290 becomes XY2CE1A296). With 230 V pilot lights, BA9S bulb included, add 7 at the end of the reference. (example : XY2CE1A290 becomes XY2CE1A297).

Preventa

Operator dialog

Foot switches - metal
Single pedal switches

Type Foot switches without protective cover 2 cable entries for $n^{\circ} 16$ (Pg 16) cable gland (1)							
Trigger mechanism			With (positive operating action reqd.)		Without		
Colour			Orange		Blue		Orange
Mechanical life (millions of operating cycles)			15				
Degree of protection			IP 66				
Shock resistance			100 joules				
Rated operational characteristics			AC 15, A 300 / DC 13, Q 300 (conforming to EN IEC 60947-5-1)				
Dimensions W x D H			$104 \times 172 \times 59 \mathrm{~mm}$				
Contact operation	1 step	1 N/C + N/O	XPER810		XPEM110		XPER110
		$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPER811		XPEM111		XPER111
	2 step	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPER911 X		XPEM211		XPER211
	Analogue output	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPER929		-		XPER229
(1) For entry for ISO M20 cable gland, also order adaptor DE9RA1620 (sold in lots of 5).							
Type			Foot switches without protective cover 2 cable entries for $n^{\circ} 16$ (Pg 16) cable gland (1)				
Trigger mechanism			With (positive operating action reqd.)			Without	
Colour			Blue	Orange		Blue	Orange
Mechanical life (millions of operating cycles)			15				
Degree of protection			IP 66				
Shock resistance			100 joules				
Rated operational characteristics			AC 15, A 300 / DC 13, Q 300 (conforming to EN IEC 60947-5-1)				
Dimensions W x D x H			$160 \times 186 \times 152 \mathrm{~mm}$				
Contact operation	1 step	$1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPEM510	XPER510		XPEM310	XPER310
		$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPEM511	XPER511		XPEM311	XPER311
	1 step latching	$1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	-	-		XPEM410	XPER410
	2 step	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPEM711	XPER711		XPEM611	XPER611
	Analogue output	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPEM529	XPER529		XPEM329	-

(1) For entry for ISO M20 cable gland, also order adaptor DE9RA1620 (sold in lots of 5).

Double pedal switches

Foot switches without protective cover
2 cable entries for $n^{\circ} 16$ (Pg 16) cable gland (1)

With (positive operating action reqd.)		Without	
Blue	Orange	Blue	Orange
15			
IP 66			
100 joules			
AC 15, A 300 / DC 13, Q 300 (conforming to EN IEC 60947-5-1)			
$295 \times 190 \times 155 \mathrm{~mm}$			
XPEM5100D	XPER510D	XPEM3100D	XPER3100D
XPEM5110D	XPER5110D	XPEM3110D	XPER3110D

[^7]
Foot switches - plastic
 Single pedal switches

ISO entry
(to EN 50262)

Type		2 cable entries for ISO M20 cable gland		
Trigger mechanism		Without		With (positive operating action reqd.)
Colour		Yellow	Yellow	Yellow
Mechanical life (millions of operating cycles)		5		
Degree of protection		IP 55		
Shock resistance		30 joules		
Rated operational characteristics		AC 15, A 300 / DC 13, Q 300 (conforming to EN IEC 60947-5-1)		
Dimensions W x D x H Contact operation 1 step		$160 \times 280 \times 70 \mathrm{~mm}$	$160 \times 280 \times 162 \mathrm{~mm}$	$160 \times 280 \times 162 \mathrm{~mm}$
	$1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPEY110	XPEY310	XPEY510
	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	-	XPEY311	XPEY511
2 step	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPEY211	XPEY611	XPEY711

Type		Foot switches without protective cover 2 cable entries for ISO M20 cable gland			$1 \text { entry (1) }$
Trigger mechanism		With (positive operating action reqd.)	Without		Without
Colour		Grey+	Blue	Grey	Black
Mechanical life (millions of operating cycles)		10			2
Degree of protection		IP 66			IP 43
Shock resistance		100 joules			
Rated operational characteristics		AC 15, A 300 / DC 13, Q 3	00 (conform	0947-5-1)	
Dimensions W x D H		$160 \times 280 \times 70 \mathrm{~mm}$			$94 \times 161 \times 54 \mathrm{~mm}$
Contact operation 1 step	$1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPEG810	XPEB110	XPEG110	XPEA110
	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	-	XPEB111	XPEG111	XPEA111
2 step	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$	XPEG911	XPEB211	XPEG211	-

(1) Cable entry for ISO M16 or $n^{\circ} 9(\mathrm{Pg} 9)$ cable gland and for ISO M20 or $n^{\circ} 13(\mathrm{Pg} 13.5)$ cable gland.

Type	
Trigger mechanism	
Colour	
Mechanical life (millions of operating cycles)	
Degree of protection	
Shock resistance	
Rated operational characteristics	
Dimensions W x D x	
Contact operation 1 step	1 N/C + N/O
	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$
2 step	$2 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{O}$

Foot switches with protective cover
2 cable entries for ISO M20 cable gland

Preventa Control units
 Operator dialog

(1) To order a two-hand control station with pedestal XY2SB90, add 4 to the end of the reference (example: XY2SB71 becomes $X Y 2 S B 714$).
(2) For entry for ISO M25 cable gland, also order adaptor DE9RA2125 + fixing nut DE9EC21 (sold in lots of 5).

Enabling switch

Contact states

Type
Number of contacts
Type of contacts
Description
Shock / vibration resistance
Degree of protection
Rated operational characteristics
Dimensions W x D x H
References

Plastic grip Entry for $\varnothing 7$ to 13 mm cable	
3	3
2 "NO" + 1 "NC"	$\begin{aligned} & 2 \text { "NO" + } 1 \text { "NC" } \\ & 1 \text { "NO" auxiliary } \end{aligned}$
3 positions	3 positions with button for N/O contact (auxiliary)
$10 \mathrm{gn} / 6 \mathrm{gn}$	
IP 66	IP 65
AC 15, C300 / DC 13, R300 (conforming to EN IEC 60947-5-1)	
$46 \times 58 \times 261 \mathrm{~mm}$	$46 \times 58 \times 269 \mathrm{~mm}$
XY2AU1	XY2AU2

For fixing accessories, please refer to www.schneider-electric.com.

Motor control
Switch disconnectors
Front mounting

Type	
Front plate dimensions (mm)	
Fixing	
Degree of protection Rated operational voltage (Ue) Thermal current in open air (lth)	$\frac{12 \mathrm{~A}}{20 \mathrm{~A}}$
	$\frac{35 \mathrm{~A}}{32 \mathrm{~A}}$
$\frac{40 \mathrm{~A}}{63 \mathrm{~A}}$	
	$\frac{80 \mathrm{~A}}{125 \mathrm{~A}}$
	$\frac{175 \mathrm{~A}}{}$

Vario for high performance applications

60×60	60×60	90×90	60×60	60×60	90×90
$\varnothing 22.5 \mathrm{~mm}$	4 screws	4 screws	$\varnothing 22.5 \mathrm{~mm}$	4 screws	4 screws
IP 20					
690 V					
VCD02	VCF02	-	VCCD02	VCCF02	-
VCD01	VCF01	-	VCCD01	VCCF01	-
VCD0	VCF0	-	VCCD0	VCCF0	-
VCD1	VCF1	-	VCCD1	VCCF1	-
VCD2	VCF2	-	VCCD2	VCCF2	-
-	VCF3	-	-	VCCF3	-
-	VCF4	-	-	VCCF4	-
-	-	VCF5	-	-	VCCF5
-	VCF6	-	-	VCCF6	

ᄃ.

Enclosed

Mini-Vario
60×60
$82.5 \times 106 \times 131 \mathrm{~mm}$
IP 55
690 V
VCFN12GE
VCFN20GE
VCFN25GE
VCFN32GE
VCFN40GE
-
-
-
-

Vario	
60×60	90×90
$90 \times 131 \times 146 \mathrm{~mm}$	$241 \times 191 \times 291 \mathrm{~mm}$
IP 65	IP 65
690 V	690 V
VCF02GE	-
VCF01GE	-
VCF0GE	-
VCF1GE	-
VCF2GE	-
VCF3GE (1)	-
VCF4GE (1)	-
-	VCF5GEN
-	VCF6GEN

TeSys

Motor control

Motor starters
Enclosed thermal-magnetic motor circuit-breakers

Type		Thermal-magnetic motor circuit-breakers				
Motor power	kW (on 400 V)	-	0.06	0.09	0.12...0.18	0.25...0.37
Setting range	A	0.1...0.16	0.16...0.25	0.25 ..0.40	0.40...0.63	0.63... 1
Current Id \pm 20\%	A	1.5	2.4	5	8	13
Current Ithe (in enclosure) Reference	A	0.16 GV2ME01	0.25 GV2ME02	0.40 GV2ME03	0.63 GV2ME04	1 GV2ME05
Motor power	kW (on 400 V)	0.37...0.55	0.75	1.1...1.5	2.2	3... 4
Setting range	A	1...1.6	1.6...2.5	2.5... 4	4...6.3	6... 10
Current Id \pm 20\%	A	22.5	33.5	51	78	138
Current Ithe (in enclosure)	A	1.6	2.5	4	6.3	9
Reference		GV2ME06	GV2ME07	GV2ME08	GV2ME10	GV2ME14
Motor power	kW (on 400 V)	5.5	7.5	9... 11	11	15
Setting range	A	9... 14	13... 18	17... 23	20... 25	24... 32
Current Id \pm 20\%	A	170	223	327	327	416
Current Ithe (in enclosure)	A	13	17	21	23	24
Reference		GV2ME16	GV2ME20	GV2ME21	GV2ME22	GV2ME32

Enclosure

Type
Mounting
Degree of protection
Dimensions W x D x H (1)
References

Empty enclosure	
Surface mounting	Flush mounting
IP 55	IP 55 (front face)
$93 \times 145.5 \times 147 \mathrm{~mm}$	$93 \times 55 \times 126 \mathrm{~mm}$
GV2MC02	GV2MP02

(1) Dimensions with safety device GV2K04 fitted.

Safety device

Type
With red mushroom head
References

Safety devices		
Turn to release Padlockable in "Off" position GV2K04	Turn to release	Key release (key n° 455) GV2K021

Type			
Degree of protection			
Standard moto $220 / 230 \mathrm{~V}$	wer ratings $400 / 415 \mathrm{~V}$ 0.06	$\begin{aligned} & \text {, category AC3 } \\ & 440 \mathrm{~V} \\ & 0.06 \end{aligned}$	Ith setting range（A） $0.16 \ldots 0.25$
0.06	0.09	0.12	0．25．．．0．40
－	0.18	0.18	0．40．．．0．63
0.12	0.25	0.25	0．63．．． 1
0.25	0.55	0.55	1．．1．6
0.37	0.75	1.1	1．6．．．2．5
0.75	1.5	1.5	2．5．．． 4
1.1	2.2	3	4．．．6．3
1.5	4	4	6．．． 10
3	5.5	5.5	9．．． 14
4	7.5	9	13．．． 18
4	9	9	17．．． 23

Non reversing		Reversing
IP 657	IP 657	IP 657
Basic reference，to be completed by code indicating voltage（1）		
LG1K065．．02	LG7K06．002	LG8K06．002
LG1K065．003	LG7K06••03	LG8K06．003
LG1K065••04	LG7K06••04	LG8K06••04
LG1K065••05	LG7K06••05	LG8K06•005
LG1K065•006	LG7K06••06	LG8K06••06
LG1K065••07	LG7K06••07	LG8K06．007
LG1K065•008	LG7K06••08	LG8K06••08
LG1K065••10	LG7K06・ャ10	LG8K06••10
LG1K095••14	LG7K09・ャ14	LG8K09••14
LG1D122••16	LG7D12・ャ16	LG8K12••16
LG1D182••20	LG7D18．っ20	－
LG1D182••21	LG7D18••21	－

With integral control transformer，400／24 V

400／24 V With integral control transformer， $400 / 24 \mathrm{~V}$	
Non reversing	Reversing
IP 657	IP 657
Basic references	（The code Q7（ $380 / 400 \mathrm{~V}$ ）designates the power supply voltage to which the starter will be connected）
LJ7K06Q702	LJ8K06Q702
LJ7K06Q703	LJ8K06Q703
LJ7K06Q704	LJ8K06Q704
LJ7K06Q705	LJ8K06Q705
LJ7K06Q706	LJ8K06Q706
LJ7K06Q707	LJ8K06Q707
LJ7K06Q708	LJ8K06Q708
LJ7K06Q710	LJ8K06Q710
LJ7K09Q714	LJ8K09Q714

Type	
Degree of protection	
Standard motor power ratings（kW），category AC3 $\begin{gathered} 380 / 400 \mathrm{~V} \\ 0.06 \end{gathered}$	Ith setting range（A） $0.16 \ldots 0.25$
0.09	0．25．．．0．40
0.18	0．40．．．0．63
0.25	0．63．．． 1
0.55	1．．．1．6
0.75	1．6．．．2．5
1.5	2．5．．． 4
2.2	4．．．6．3
4	6．．． 10

	Control circuit voltages available			
Volts $50 / 60 \mathrm{~Hz}$ （1）Voltage code	$\begin{aligned} & 24 \mathrm{~V} \\ & \mathrm{~B} 7 \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & \text { P7 } \end{aligned}$	$\begin{aligned} & 400 \mathrm{~V} \\ & \text { v7 } \end{aligned}$	$\begin{aligned} & 415 \mathrm{~V} \\ & \text { N7 } \end{aligned}$

[^0]: > Save cost by avoiding external safety experts engineering
 > Reduce design time by our examples of calculation of the safety level for each safety function

[^1]: SoSafety comprising Protect Area Design, ASI SWIN and XPS MCWIN (full versions) and demo version of XPS MFWIN. Reference: XPSMCWIN

 XPSMCWIN update version comprising the new XPSMCWIN 2.10, only if the previous version of Safety Suite V1 with XPSMCWIN version 2.0 (ref: XPSMCWIN) have been already installed. Reference: SSVXPSMCWINUP

[^2]: SoSafety comprising Protect Area Design, ASI SWIN, XPS MCWIN and XPS MFWIN (full versions).
 Reference: SSV1XPSMFWIN

 XPSMFWIN update version comprising the new XPSMFWIN 4.1 build 6150, only if the previous version of Safety Suite V1 with XPSMFWIN version 4.1 (ref: SSV1XPSMFWIN) have been already installed.
 Reference: SSVXPSMFWINUP

[^3]: (1) To be ordered only if the previous version of have been already installed.
 (2) Products referenced XPSMF1/MF2/MF3 are marked Himatrix F1, F2 and F3

[^4]: (2) Configuration software XPSMCWIN (complete version) or SSVXPSMCWINUP (update version), connecting cable, adaptor and set of screw terminal plug-in connectors XPSMCTS16 and XPSMCTS32 or set of spring clip terminal plug-in connectors XPSMCTC16 and XPSMCTC32 to be ordered separately.

[^5]: (1) Motor frequency $\leq 60 \mathrm{~Hz}$.. For frequencies $\geq 60 \mathrm{~Hz}$, please refer to the "Safety solution" catalogue.
 (2) Removable terminal block version only.

[^6]: (1) circular appearance

[^7]: (1) For entry for ISO M20 cable gland, also order adaptor DE9RA1620 (sold in lots of 5).

